The Sodium-Activated Potassium Channel Is Encoded by a Member of the Slo Gene Family

نویسندگان

  • Alex Yuan
  • Celia M. Santi
  • Aguan Wei
  • Zhao-Wen Wang
  • Kelly Pollak
  • Michael Nonet
  • Leonard Kaczmarek
  • C.Michael Crowder
  • Lawrence Salkoff
چکیده

Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conductance, and prominent subconductance states. In addition to activation by Na(+), we report that rSLO-2 channels are cooperatively activated by intracellular Cl(-), similar to C. elegans SLO-2 channels. Since intracellular Na(+) and Cl(-) both rise in oxygen-deprived cells, coactivation may more effectively trigger the activity of rSLO-2 channels in ischemia. In C. elegans, mutational and physiological analysis revealed that the SLO-2 current is a major component of the delayed rectifier. We demonstrate in C. elegans that slo-2 mutants are hypersensitive to hypoxia, suggesting a conserved role for the slo-2 gene subfamily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A component of calcium-activated potassium channels encoded by the Drosophila slo locus.

Calcium-activated potassium channels mediate many biologically important functions in electrically excitable cells. Despite recent progress in the molecular analysis of voltage-activated K+ channels, Ca(2+)-activated K+ channels have not been similarly characterized. The Drosophila slowpoke (slo) locus, mutations of which specifically abolish a Ca(2+)-activated K+ current in muscles and neurons...

متن کامل

Molecular Identification of the Na+-Activated K+ Channel

Progress in understanding sodium-activated potassium channels (K(Na)), suggested to function in excitable cells both during physiological conditions and protectively during hypoxia, has been limited by their unknown molecular identity. In this issue of Neuron, Salkoff and coworkers now show that members of the Slo gene family, Slo2.1 and Slo2.2, encode functional K(Na) channels.

متن کامل

Behavioral Deficits Following Withdrawal from Chronic Ethanol Are Influenced by SLO Channel Function in Caenorhabditis elegans.

Symptoms of withdrawal from chronic alcohol use are a driving force for relapse in alcohol dependence. Thus, uncovering molecular targets to lessen their severity is key to breaking the cycle of dependence. Using the nematode Caenorhabditis elegans, we tested whether one highly conserved ethanol target, the large-conductance, calcium-activated potassium channel (known as the BK channel or Slo1)...

متن کامل

beta subunits modulate alternatively spliced, large conductance, calcium-activated potassium channels of avian hair cells.

Electrical tuning confers frequency selectivity onto sensory hair cells in the auditory periphery of frogs, turtles, and chicks. The resonant frequency is determined in large part by the number and kinetics of large conductance, calcium-activated potassium (BK) channels. BK channels in hair cells are encoded by the alternatively spliced slo gene and may include an accessory beta subunit. Here w...

متن کامل

Beta2 and beta4 subunits of BK channels confer differential sensitivity to acute modulation by steroid hormones.

Membrane-associated receptors for rapid, steroidal neuromodulation remain elusive. Estradiol has been reported to facilitate activation of voltage- and Ca(2+)-dependent BK potassium channels encoded by Slo, if associated with beta1 subunits. We show here that 1) multiple members of the beta family confer sensitivity to multiple steroids on BK channels, 2) that beta subunits differentiate betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003